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Energy levels of the Schr6dinger equation for a double-well potential V(x, y; Z 2, 2y 2, A) 
= -ZZx xa - ZZy 2 + A[axxx 4 + 2axyxay 2 + ayyy 4] in a two-dimensional system are calculated 
using the Hill determinant approach for several eigenstates and over a wide range of  values of 
the perturbation parameters (A, 2 z Z~,, Z~). Some of the results calculated by the Hill determinant 
approach are compared with those results produced by the inner product technique. 

1. In t roduc t ion  

The Schr6dinger equation for the one-dimensional double-weU potential 

V(x ;  Z 2) = - Z 2 x  2 n t- x 4 (1) 

has been the subject of numerous investigations with high calculational accuracy 
cannot be doubted, and the corresponding literature is abundant [1-7]. These stud- 
ies have been carried out from both analytical and numerical points of view often 
in the study of systems for which the potential has been modeled as a double- 
minimum well, e.g. the ammonia molecule or a hydrogen-bonded solid. Unfortu- 
nately most of these investigations have not been extended to multidimensional 
systems. 

In this paper we present extensive numerical calculations which use the Hill 
determinant technique (in an iterative form) to calculate the energy levels of the 
SchrSdinger equation for a double well potential for a wide range of values of the 
perturbation parameters Zx 2, Z 2, A and for several eigenstates. 

In this work, the general form of the SchrSdinger equation for the double-well 
potential V(x, y; Z2x, Z2y, A) in a two-dimensional system is taken in the form 

[ 0 2  02 2 1 (x,y) = Enx,nytgnx,ny(X,y) (2) Ox 2 Oy 2 "}- V(x,y;Z2x, Z¢,A) q2nx,n, 

where V(x, y; Z 2, Z~, A) is given as 
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V(x,y;Z2x, Z2, A) = -Z2xX'~- Z~y2 + A[axxX4 + 2axyx~y2 +ayyy4] . (3) 

The eigenvalue spectrum of  the Schr6dinger equation (2) with V(x, y; Z 2, Z 2, 
)~) has the feature that  the lower eigenvalues for states Eoo, El1, and (E01 = Elo) are 
closely bunched together if the values of Z 2 and Z 2 are sufficiently large at small 
values of  A. As Z 2 and Z 2 increase, the magnitude of  the splitting between these 
levels decreases i.e. IEll -E001---0 or IE0i -E001 ~- 0. These energy levels are 
shown in figs. 1 and 2. 

The depth of the double well is controlled by the parameters Zx 2, Z 2 at constant 
value of  the perturbation parameters (,k, axx, axy, ayy) (see fig. 3). The Hill determi- 
nant  approach works well for small and medium values of  Zx 2, Z 2 at small values 
of  A; as Z 2 and Z 2 increase the depth of the well increases and for deep wells the 
degree of convergence decreases. 

Our work illustrate the high flexibility of  the Hill determinant  approach; this 
gives it an advantage over the inner product technique, which can only work for 
small values of Z 2 and Z 2, at which the potential minima are shallow [8]. 

Since many of  our results for this problem are not available in the literature it 
was found useful to check them using another method of  calculation such as the 
inner product  technique. The agreement in the results calculated by two different 
methods suggests accuracy yielded by our calculations is good (see table 4). 

For purposes of  clarity, this paper is divided into three sections. Section two is 
concerned with the Hill determinant approach and its use to calculate the energy 
eigenvalues for double well potential, and section three contains a discussion of  the 
results. 
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Fig. 1. Graph of three energy levels for different values of Z 2 for the case axx = ayy - - - - -  1, axy = 0; at 
Zx ~ = z ~  = z 2 a n d  ~ = 1. 
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Fig. 2. Graph of three energy levels for different values of Z 2 for the case a= = ayy = a~ = 1; at 
Z~2 = 2y z = Z2andA = 1. 

2. The recurrence relation for the double-wel l  potential  V(x, y; Z~, Z~y, ~) 
using the Hill  determinant approach 

The traditional l i terature on Hill determinants  deals with one-dimensional pro- 
blems; the extension to two or three dimensions necessarily involves the use of  a 
product  basis set, leading to large matrix or determinantal  problems, which are 
conveniently handled by a relaxation method.  

In this section we use the Hill determinant  approach to calculate the energy levels 
of  quantum-mechanical  systems whose potential functions have symmetric  and 
nonsymmetr ic  behaviour. An  extended analysis of  numerical  calculations is carried 
out  for a double-well potential in a two dimensional system, and illustrate the 
applicability of  the Hill determinant  approach for handling potentials in a multidi- 
mensional  system. 

To f'md the recurrence relations which allow us to calculate the eigenvalues for 
the Schr6dinger equation (2), we introduce the wavefunction in the form: 

OL 
• , , , , , , (x ,y)  = e x p - ~  [x 2 + yZ] Z H ( M ' N ) ( x M Y N )  " (4) 

M,N 

The next step is to substitute ~,~,,, (x, y) in the Schr6dinger equat ion (2). After  
some algebra, we obtain the recurrence relation 

[2c~(M + N + 1) - E ] H ( M , N )  = W ( M , N ) ,  (5) 

where 
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Fig. 3. The double well potent ial  in two-dimensional  system given by eq. (3). (a) Zx 2 = 10; Z 2 = 103 
a t A =  1.(b) Z~ -- Z~2 = lOOatA = 1. (c)Z~ = Z ~  = lOOatA = 10 6. 
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W ( M , N )  = ( M +  2 ) ( M +  1 ) H ( M +  2,N) + ( N + 2 ) ( N +  1 ) H ( M , N  + 2) 

+ (a 2 + Z2x)H(M - 2,N) + (a 2 + Z 2 ) H ( M , N  - 2) 

- A[axxH(M - 4, N) + 2axyH(M - 2, N - 2) 

+ a y y H ( M , N - 4 ) ] .  (6) 

The recurrence relation (5) is used as follows. First the state numbers nx and ny (0, 
1, 2. . . )  are chosen, specifying which particular state is being treated. Initial values 
of (Mo = nx and No = ny) are taken to start the calculations, and the initial coeffi- 
cient H(M0, No) is set equal to one. 

In matrix-theoretic terms, the calculation is using a Gauss-Seidel (R = 1) or suc- 
cessive-over-relaxation (R ~ 1) approach to calculate the low eigenvalues of a large 
matrix. Increasing M and N corresponds to increasing the number of basis states 
ie the dimension of the matrix. In the present approach the relevant matrix elements 
are very simple, as seen from eq. (5), and the iterative solution method, although 
often only useful for low eigenvalues, avoids explicit storage and manipulation of 
large matrices. In the iterations, all the H ( M ,  N) with (M, N) ~ (M0, No) are 
adjusted according to the assignment 

H ( M , N )  = W ( M , N ) [ 2 a ( M  + N + 1) - E] -1 (7) 

for some fixed a and some trial E value. In order to speed the convergence of the 
energy, we must choose an appropriate initial value of a. The energy is found from 
the relation (7) for the special case M = M0, N = No, when the coefficient on the 
left-hand side becomes H(Mo, No) = 1. After this adjustment process a revised E 
estimate is calculated using the assignment statements 

Ee = 2a(M0 +No + l) - W(Mo,No),  (8) 

E = Rage + (1 - R)E.  (9) 

The relaxation parameter R can be changed in value to help in stabilizing the con- 
vergence to a desired eigenvalue. R replaces E by a new value intermediate between 
the old E and the computed Ee; an R value between 0 and 1 often produces conver- 
gence in cases where the direct replacement of E by Ee (the case R = 1) would give 
divergence. 

For the case of symmetric double-well potential, we use a parity index Pxy (for 
interchange symmetry x ~ y) in order to cut down the amount of computation 
required. IfPxy = 1, then the relation (for the interchange x ~ y). 

H ( M , N )  = H ( N , M )  (10) 

holds; for the case of odd parity Pxy = - l, the relation becomes 

H ( M , N )  = - H ( N , M ) .  (11) 
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As suggested by the referees, if we take the wavefunction (4) in the alternative 
form 

~nx,~y (x, y) = exp -l[axX2 + ayy2] ~ H(M,  N)(xMy N) (12) 
M,N 

and substitute the wavefunction (10) in the Schr6dinger equation (2), we obtain 
the following recurrence relation 

[(2axM + 2ayN + ax + ay) - E]H(M,N)  = Wxy(M,N) , (13) 

where 

Wxy(M,N) -- ( M +  2 ) ( M +  1)H(M + 2, N) + ( N +  2 ) ( N +  1 )H(M,N  + 2) 

+ (a 2 + Z2x)H(M - 2, N) + (a~ + Z 2 ) H ( M , N -  2) 

- A[axxU(M - 4, N) + 2axyU(M - 2, N - 2) 

+ a y y H ( M , N - 4 ) ] .  (14) 

The above relation (13) has been used to calculate some energy levels for different 
values of the parameters A, Z 2, Z 2. In our computations, we have not observed any 
fundamental difference in behaviour between the relations (5) and (14) as we vary 

2 to achieve the best convergence. Aitken's trans- the adjustable parameters a, a2x, ay 
formation was found to be effective to increase the accuracy of our results and to 
accelerate the rate of convergence of our calculations; if E,, E,+I, E~+2 are three suc- 
cessive partial sums of a series whose convergence is approximately geometric, 
then an improved estimate is 

[men]2 [En+l - En]2 (15) 
E~ = E~ A2E~  - E ,  - [E~+2 - 2E~+1 + E , ]  " 

3. Results and discussion 

The Hill determinant approach has been applied in this paper for the Schr6dinger 
equation equation with a double-well potential in a two-dimensional system. 
Eigenvalues for different values of Z 2, Z 2, A and state numbers nx, ny are listed in 
table 1. Note that the degeneracy between the states (0, 1) and (1, 0) is intrinsic to 
the Hamiltonian and it cannot be broken by the perturbation used here when the 
potential has exchange symmetry. As a general remark, we note the degree of accu- 
racy (ie the number of digits) in the eigenvalues that we have able to obtain by our 
approach appears to diminish slowly with the increase in the values Z 2, Z 2 at low 
values of the A. Also the accuracy is usually greater for larger values of A than for 
smaller values of A, at the same values of Z 2, Z 2. 
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Table 1 

Eigenvalues ofa  double-wellpotential V(x,y; 2 2 Z~,, Zy, A) in a two-dimensional system for several eigen- 
states (nx, ny). 

A Z2x Z~ axx=ayy=l,a:,y=O 

(0, O) (0, 1) (1, O) (1, 1) 

1 0.0 0.1 2.0841715337663 
1 0.0 0.5 1.9303796088558 
1 1 0 1.7180150956649 
1 0.5 0.1 1.8938269616537 
1 1 1.5 1.0743592007601 
1 1.5 2.5 .22409791811492 
0.5 4 3 -7.662038794 
1 4.5 5.5 -6.981636412 
1 10 12 -51.821526428 
1 10 10 -41.267153405 

4.7692941552708 
4.3941414203712 
4.4573260349821 
4.5789495831583 
2.9541245141742 
1.4931409266214 
-7.4942886374 
-6.8978480243 
-51.821426077 
-41.267123587 

1 15 15 -101.6827745684 -101.6827745684 
100 15 20 6.8662171904777 17.164418433274 
250 25 30 10.286268250845 24.567605781305 
500 75 50 10.460542081481 28.688520566212 
103 100 150 10.743592007601 29.541245141743 
104 250 150 38.651724088558 93.859780423166 
105 500 400 91.269496459576 213.73023322005 
106 500 500 208.43480554835 479.66223652101 
106 500 600 208.06893892985 478.75425715647 

4.8234824730835 
4.6696905481730 
3.8948982926035 
4.3575887731691 
3.2512423976987 
2.1038632315920 
-7.642606595 
-6.8978480243 
-51.8212396100 
-41.267123587 
-101.6827745684 
17.785495511134 
25.021048900435 
26.848500343116 
32.512423976987 
91.263170299536 
212.54700375903 
479.66223652102 
479.29636990253 

7.5086050945881 
7.1334523596884 
6.6352092319207 
7.0427113946737 
5.1310077111129 
3.3729062400356 
-7.4748559359 
-6.6152131325 
-51.821396247 
-41.267093768 
-101.6827745684 
28.083696753929 
39.625322847091 
45.076478827847 
51.310077111129 
146.47122663415 
335.00774051950 
750.88966749370 
749.98168812734 

A 2 2 22 a ~ = a y y = a x y = l  

(0, 0) (0, 1) (1,0) (1, 1) 

1 0.0 0.1 2.3119803260619 
1 0.0 0.0 2.3448290727443 
5 0.0 0.0 4.0096013134609 
5 1.5 2.5 3.2007409755799 
10 5 10 2.3621424429482 
1 4.5 5.5 -3.783427828226 
1.5 5 7.5 -4.416766701613 
1 6 8 -10.8152168029 
1 10 10 -20.69255783668 
1 15 15 -50.8775172003 
1 20 20 -93.7526635 
7.5 4.5 5.5 2.7282030231309 
100 25 30 6.5789824847560 
50 10 15 6.2440477071719 
250 25 30 11.763129178657 
150 15 20 10.201188203637 
200 25 20 11.068334602606 
500 50 40 14.695169528059 
103 100 150 14.336971557503 
104 200 150 45.063525246676 

5.3092354547368 
5.3942271641723 
9.2239987016447 
7.6704702674755 
6.4158733970732 
-3.450758028297 
-4.196728942146 
-10.8043513558 
-20.4574196849 
-50.733091622 
-93.647517 
7.2758911537284 
17.474999520183 
15.400262816175 
28.618943538731 
24.527916629262 
27.301343680168 
36.539320448927 
37.065281478853 
107.54441868582 

105 400 500 102.417188049958 238.70479396810 
106 500 500 231.21310159396 533.77468730805 
106 500 600 230.88459540694 532.92460946112 

5.3659738933654 
5.3944271641723 
9.2239987016447 
8.0271612515257 
8.0140448541912 
-2.284993651165 
-1.830547414181 
-8.239822679133 
-20.4574196849 
-50.733091622 
-93.647517 
7.6130141154314 
18.183174517204 
16.252704815698 
29.103530847105 
25.097397703960 
26.781555101273 
35.768070145387 
40.341478766995 
106.17990366782 
239.94712297751 
533.77468730805 
533.49130533874 

8.8513398937019 
8.9280821998500 
15.266805811696 
13.418326231740 
13.401706386112 
-1.2602872067694 
-1.0407661371727 
-8.1332227637539 
-19.764280025300 
-50.3012984043 
-93.33247428 
13.322867448641 
31.822958099766 
27.469003016295 
49.358937334656 
42.258797102046 
46.153171386330 
61.909780228296 
68.953580284331 
179.72672176711 
399.45968738465 
885.15703420306 
884.38979006080 
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Table 1 (continued) 

A Z~ Z2y axx = 0 . 5 ,  ayy = 0.75, axy = 0.6 

(0, 0) (0, 1) (1, 0) (1, 1) 

1 0.0 0.5 1.8010121367096 4.2516467433369 4.2622966646949 7.1363578422002 
1 1.5 2.5 -0.011279310633 1.2561396074382 1.5974724778474 3.4619147639219 
2 4.5 5 -2.098288791127 -0.605352402503 -1.291658247144 1.0470708477221 
5 8 4 -1.000482656637 3.2323080807639 -0.156981253998 4.9593759170571 
10 5 7.5 1.6857304334994 5.6211037556562 5.5603027478250 10.650808702939 
100 25 30 3.9465741811223 13.168907709666 11.889693704429 23.578973289838 
103 100 120 10.318423329712 31.256016563324 28.461311611779 54.520815541659 
104 250 300 32.472510107721 84.153336581936 77.853234823537 139.42771472640 
105 400 300 86.490662484974 210.70869414175 194.15031210123 337.81372446629 
106 500 600 194.95862716579 466.33288082779 435.50923225175 747.77465947203 

In table 1 the values of the energy are calculated for several eigenstates over a 
wide range of Z~ 2, Zy 2, ,~ and for different values of (axx, axy, ayy), for several eigen- 
states such as E00, Ell, E01 and El0. Emphasis is placed on the larger values of Zx 2, 
Z 2, because the eigenvalues for different states E00, El0, E01, Ell, have almost 
degenerate eigenvalues. As Zx 2, Z 2 increase (at low values of ~), the magnitude of 
the splitting between these levels decreases, i.e. IEH-E00t ~ IE10-E001 
= AE ~ 0, as illustrated by our results in table 1. 

When the potential V(x,y; Z~, Z2y, ~) is separable ie axy = 0, the total energy 
En~,ny of a state is the sum of two components Et, = Ex + Ey, but when axy ~ 0 the 
potential is nonseparable and the total energy of a state is the sum of three compo- 
nents Etno, = Ex + Ey + Exy. When the system is separable, it is clear that the split- 
ting AE vanishes for smaller values of Z~, Zy z, in contrast to the case for the 
nonseparable system, in which the splitting vanishes for larger values ofZx 2, Z 2. 

In figs. 1 and 2 we plot some of our results from table 1, for the double well poten- 
tial in a two dimensional system for the symmetric case (Zx 2 = Z~ _-_=- Z 2) at A = 1 
for the three energy levels Eoo, Elo, Ell for different values of Z 2. It can be seen that 
the energy levels are degenerate for higher values of Z 2. 

It is important to point out that the an adjustable parameter c~ has played an 
important role in the convergence process in our calculations. The best c~ values in 
this calculation have been obtained by numerical search, and our calculations 
reveal the importance of finding these best values. The general consideration which 
governs our choice is that, as Z~, Z 2, ~ increase the value of a increases. This is illu- 
strated by the data in table 2, the convergence of our results is influenced by the 
value of the adjustable parameter a for the the energy levels Eoo, Elo and Ell. Also 
the accuracy possible is usually greater for the symmetric (Z 2 = Zy 2) case than for 
the nonsymmetric case (Zx 2 ~ Z2). However, from a practical view point handling 
the symmetric case is preferable; the computation is more quickly performed than 
that for the nonsymmetric case, and requires less memory. Next we consider the use 
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Table 2 
Convergence for some eigenvalues for (nx, ny) for the double-weU potential for the case 
axx = ayy : axy = 1 with various values of the adjustable parameter a. 

Zx 2 z~ (0,0) ~ (1,0) ~ (1,1) 

1 2.5 1.5 1.5 0 1.5 
2 2.44 2.5 2.5 

0.745377488 3.5 2.442820952 3.6 5.5209345 3.5 
0.745377488284 4.5 2.4428209523016 4.8 5.209345985547 4.5 
0.7453774882843 5.7 2.4428209523016 6 5.5209345985547 5.5 

1000 80 100 

106 550 500 

20 20 20 
17.1295 30 43.8738 30 74.93 30 
17.129556790947 40 43.873825041950 40 74.939654090303 40 
17.129556790947 50 43.873825041950 50 74.939654090303 50 

250 250 250 
231.0489 300 533.349 300 884.77 300 
231.048917720 370 533.3497757 360 884.773513 350 
231.04891772053 410 533.34977574434 410 884.77351306400 408 

of two adjustable parameter ax ,  ay .  Our results for three energy levels Eoo, Elo 
and En ,  along with the values of Z 2, Z 2, ~, ax and ay are shown in table 3. We wish 
to draw attention to the fact that the Hill determinant approach works equally 
well for (ax = ay )  and ( a x ¢  ay) as adjustable parameters. We used two values of  
ax and ay to verify the convergence of the Hill determinant for this calculation. The 
calculated energy eigenvalues for case Z 2 < Z 2 at low values of  ~ converge faster 
if we used ax < ar  instead of using (a~ --- ay). The two examples show that are 
( A =  1,Z2 = O, Z2 = 7.5) and()~ 2 2 = I,Z~ = 0.5,Z¢ = 5). 

As suggested by the referees, comparison with the results of  the inner product  
technique has been made in table 4, for various values of~ and Z 2 (for three energies 
l eve ls  E~,I, E+0,2 and E~, 0, for two special cases, i.e. a~x = ayy = axy = 1 and 
axx = ayy = 1, axy = 3. The results for the case axx = ayy = axy = 1 illustrate the 
presence of a special circular symmetry. The energy levels characterized by labels 
(11, +; 20, - ) ,  and (11, +; 02, +) have crossings when axx = axy = ayy ~---1, 

axx = ayy = 1, axy = 3, respectively, for all values of A and Z 2. 
The crossing is removed when the ayy ~ 1 and axe ¢ 3 and the energy level then 

splits into two levels, as shown by our results in table 4. F rom the listed results in 
table 3, we observed that  the accuracy produced by Hill determinant approach in 
general, is better than that produced by inner product  technique. 

Higher accuracies can be achieved at the expense of greater computat ion times. 
The higher values of  parameters Z 2, Z 2 and lower values of A require greater com- 
putat ion times. 

We performed special external checking calculations for the case Z 2 = Z 2 
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Table 3 
Convergence for some eigenvalues for (nx, ny) of the double-well potential for the case 
axx = ayy = a ~  = 1 for several sets of parameters A, Z~ 2 and Z 2 for various values of the adjustable 
parameters ax and ay. The empty spaces mean the eigenvalues cannot be obtained with values oft~ x and 
ay. 

A Zx 2 Z~y (0, O) (1, O) (1, 1) ~ ~y 

1 0 7.5 -7.6652 -2.3365 -2.30908 5 5 
-7.66524734 -2.33657101 -2.309079665 5 10 
-7.6652473452608 -2.3365710173287 -2.3090796649906 8 10 
-7.6652473452608 -2.3365710173287 -2.3090796649906 10 10 

1 0.5 5 

2 2.5 3.5 

10 1 10 

10 5 10 

10 15 20 

103 50 100 

2 5 
-1.46915460 2.353113116 3.028200588 5 5 
-1.4691546031127 2.3531131167167 30.28005882115 5 10 
-1.4691546031127 2.3531131167167 3.0282005882115 10 10 

2.5 3.5 
1.100258 4.048106 7.24385 4 4 
1.100258 4.048106 7.24385 4 4.5 
1.100258397 4.0481063006 7.243850857 4.5 5.5 
1.1002583974694 4.0481063006864 7.2438508578048 5.5 6.5 
1.1002583974694 4.0481063006864 7.2438508578048 6 6 

4 10 
3. 9.7 14.8 5 12 
3.004305 9.670838 14.857282 8 15 
3.0043046029903 9.6078384845395 14.857282473671 12 18 
3.0043046029908 9.6708384845395 14.857282473671 18 18 

13.40 5 10 
2.3621424429482 8.0140448541912 13.401706386112 10 12 
2.3621424429482 8.0140448541912 13.401706386112 10 15 
2.3621424429482 8.0140448541912 13.401706386112 15 15 

-3.1559 
-3.1558978137322 
-3.1558978137322 
-3.1558978137 

18.2066 
18.206646679 
18.20664667940 
18.206664667940 

0.67917 
0.6791738707284 
0.6791738707284 
0.6791738707 

46.59674 
46.5967459122 
46.596745912223 
46.596745912223 

4 8 
3.9 5 10 
3.922304 8 12 
3.9223038374693 10 15 
3.9223038374693 15 17 
3.9223038375 20 20 

20 30 
77.3559 30 40 
77.3559681236 40 50 
77.355968123686 50 60 
77.355968123686 60 60 
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Table 4 
Comparison of some eigenvalues of the double-well potential V(x, y; Z 2, A) which have been calcu- 
lated by the Hill determinant approach with those calculated by the Inner product technique. The 
empty space means the eigenvalue cannot be obtained by the inner product technique for these values 
of parameters A and Z 2. 

axx = ayy = 1 

axy= 1,E1+] = E~, 0 

A Z 2 Hill determinant Inner product 

axy = 3, E~l,l = E~-0, 2 

Hill determinant Inner product 

1 4 1.3684785185289 1 . 3 6 8 4 8  4.826751073372 4.82675107 
2 2.5 7.9813272546529 7.981327254 10.850900243477 10.8509002434 
2.5 7.5 1.6267273035404 1 . 6 2 6 7  6.382873519709 6.382873519 

10 25 -4.769515583332 -4.76 4.910470558482 4.91047 
20 50 -17.7762342 -1.844421514 -1.8444 

500 100 50.102533167839 50.102533167 68.215542621441 68.2155426214 
103 150 64.675606957923 64.6756069579 87.183652998410 87.18365299841 
104 200 177.89453442368 177.89453442368 219.12726110436 219.15726110436 

105 300 404.47451462012 404.4745146201 489.74302312367 489.7430231237 
106 500 885.15703420306 885.157034203 1066.5698268491 1066.569826849 

= Z2;  axx = ayy = 1, axy = 0. For  this special case the potential (3) reduces to two 
identical independent double-well potential 

g ( x , y ; Z  2) : _Z2[x 2 + y2] _q_ A[x 4 _j_ y4]. (16) 

We have checked the energies obtained by the present technique against results 
obtained by other methods [1-7]. 

In conclusion, we have demonstrated how the Hill determinant  approach can 
be applied to a double-well potential  in two dimensional space. This approach has 
been shown to be very effective and simpler than other methods.  
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